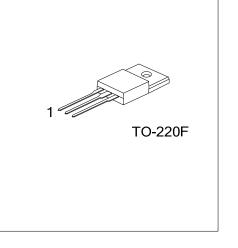


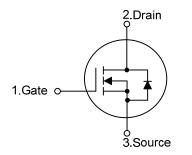
UTC UNISONIC TECHNOLOGIES CO., LTD


Preliminary

6.0A, 700V N-CHANNEL **POWER MOSFET**

DESCRIPTION

The UTC 6N70 is an N-channel mode power MOSFET using UTC's advanced technology to provide customers with a minimum on-state resistance, high switching speed, low gate charge and low input capacitance.


The UTC 6N70 is universally applied in high efficiency switch mode power supply.

FEATURES

- $R_{DS(ON)}=1.6\Omega @ V_{GS}=10V, I_{D}=3A$
- * Low gate charge (Typically 51nC)
- * Low C_{RSS} (Typically 45pF)
- * High switching speed

SYMBOL

ORDERING INFORMATION

Ordering Number		Deekere	Pin Assignment			Dealing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
6N70L-TF3-T 6N70G-TF3-T		TO-220F	G	D	S	Tube	
Note: Pin Assignment: G: Gate D: Drain S: Source							
Note: Pin Assignment: G: Gate D: Drain S: Source 6N70L-TF3-T (1)Packing Type (2)Package Type (3)Lead Free		(1) T: Tube (2) TF3: TO-220F (3) G: Halogen Free, L: Lead Free					

ABSOLUTE MAXIMUM RATINGS (unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	700	V
Gate-Source Voltage (Note 2)		V _{GSS}	±30	V
Drain Current	Continuous T _C =25°C	Ι _D	6	А
	Continuous T _C =100°C		3.8	А
	Pulsed	I _{DM}	24	А
Avalanche Current (Note 2)		I _{AR}	6	А
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	582	mJ
	Repetitive (Note 2)	E _{AR}	13	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	2.5	V/ns
Power Dissipation		D	130	W
Linear Derarting Factor		PD	1.04	W/°C
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55~+150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature

3. L = 30mH, I_{AS} = 6A, V_{DD} = 50V, R_G = 27 Ω , Starting T_J = 25°C

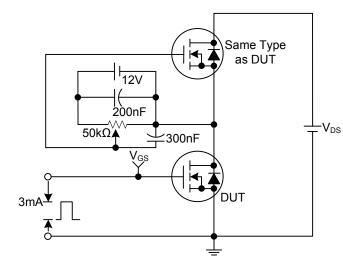
4. $I_{SD} \le 6A$, di/dt $\le 140A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

THERMAL DATA

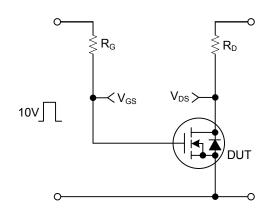
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	62.5	°C/W
Junction to Case	θις	0.96	°C/W

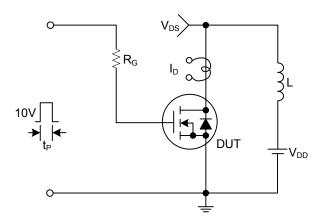
■ ELECTRICAL CHARACTERISTICS (T_c=25°C, unless otherwise specified)

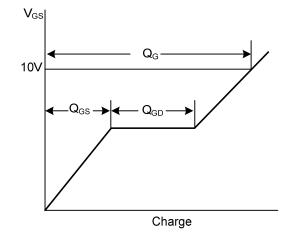
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERI	STICS						
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	700			V
Breakdown Voltage Temperature Coefficient		$\triangle BV_{DSS} / \triangle T_J$	I _D =250μA		0.79		V/°C
Drain-Source Leakage Current		I _{DSS}	V _{DS} =700V			25	μA
			V _{DS} =560V, T _C =125°C			250	μA
Gate-Source	Forward	1	V _{GS} =+30V, V _{DS} =0V			+100	nA
Leakage Current	Reverse	I _{GSS}	V _{GS} =-30V, V _{DS} =0V			-100	nA
ON CHARACTERIS	TICS			•	•		
Gate Threshold Voltage		V _{GS(TH)}	$V_{DS}=V_{GS}$, $I_D=250\mu A$, $V_{DS}=5V$	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =3A (Note 1)		1.6	1.8	Ω
DYNAMIC PARAME	ETERS			•	•		
Input Capacitance		C _{ISS}			920	1200	pF
Output Capacitance		C _{oss}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz (Note 1, 2)		100	115	pF
Reverse Transfer Capacitance		C _{RSS}			45	55	pF
SWITCHING PARA	METERS			•	•		
Total Gate Charge		Q _G	V _{GS} =10V, V _{DS} =560V,		51	67	nC
Gate to Source Charge		Q _{GS}	I_{D} =6A (Note 1, 2)		8.3		nC
Gate to Drain Charge		Q _{GD}			23.1		nC
Turn-ON Delay Time		t _{D(ON)}			18	45	ns
Rise Time		t _R	V _{DD} =350V, I _D =6A,		23	55	ns
Turn-OFF Delay Time		t _{D(OFF)}	R _G =11.5Ω		76	160	ns
Fall-Time		t⊨			26	60	ns
SOURCE- DRAIN D	IODE RATINGS AND CI	HARACTERIS	TICS				
Maximum Body-Diode Continuous Current		I _S	Integral reverse pn-diode in			6	А
Maximum Body-Diode Pulsed Current		I _{SM}	the MOSFET			24	А
(Note 3)						27	~
Drain-Source Diode Forward Voltage		V _{SD}	I _S =6A, V _{GS} =0V, T _J = 25°C			1.4	v
(Note 2)		v s⊔	15-073, VGS-0V, 1J-200			·	v
Body Diode Reverse Recovery Time		t _{rr}	I _F =6A, dI _F /dt=100A/μs, T _J = 25°C		440		ns
Body Diode Reverse Recovery Charge		Q _{RR}			4.05		μC

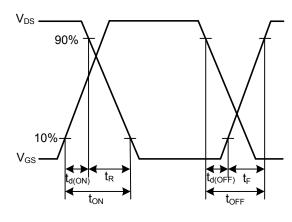

Notes: 1. Pulse Test: Pulse width $\leq 250 \mu s$, Duty cycle $\leq 2\%$

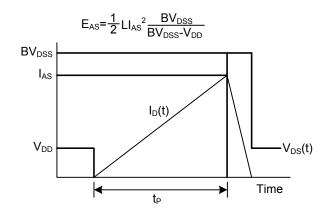
Essentially independent of operating temperature


3. Repetitive Rating: Pulse width limited by maximum junction temperature

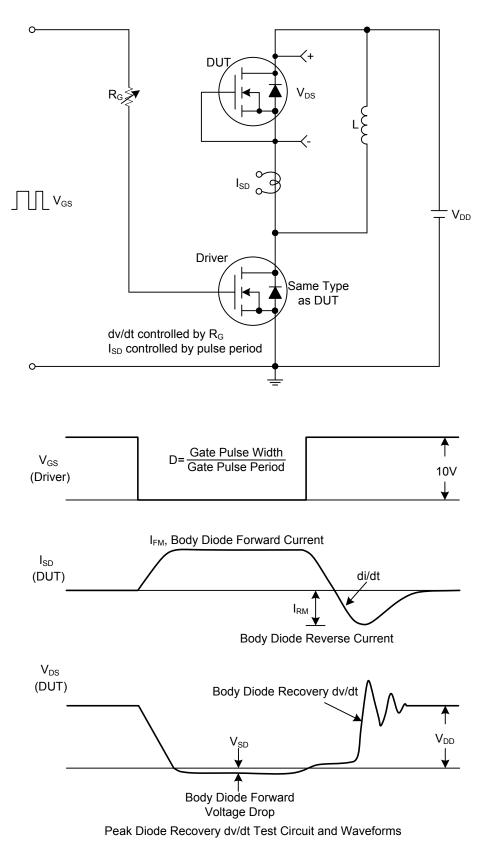

TEST CIRCUITS AND WAVEFORMS


Gate Charge Test Circuit


Resistive Switching Test Circuit


Unclamped Inductive Switching Test Circuit

Gate Charge Waveforms


Resistive Switching Waveforms

Unclamped Inductive Switching Waveforms

■ TEST CIRCUITS AND WAVEFORMS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

